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Abstract 

Infinite periodic minimal surfaces are now being 
introduced to describe some complex structures with 
large cells, formed by inorganic and organic 
materials, which can be considered as crystals of 
surfaces or films. Among them are the spectacular 
cubic crystalline structures built by amphiphilic 
molecules in the presence of water. The crystallo- 
graphic properties of these surfaces are studied from 
an intrinsic point of view, using operations of groups 
of symmetry defined by displacements on their sur- 
face. This approach takes advantage of the relation 
existing between these groups and those characteriz- 
ing the tilings of the hyperbolic plane. First, the 
general bases of the particular crystallography of the 
hyperbolic plane are presented. Then the translation 
subgroups of the hyperbolic plane are determined in 
one particular case, that of the tiling involved in the 
problem of cubic structures of liquid crystals. Finally, 
it is shown that the infinite periodic minimal surfaces 
used to describe these structures can be obtained from 
the hyperbolic plane when some translations are 
forced to identity. This is indeed formally analogous 
to the simple process of transformation of a Euclidean 
plane into a cylinder, when a translation of the plane 
is forced to identity by rolling the plane onto itself. 
Thus, this approach transforms the 3D problem of 
infinite periodic minimal surfaces into a 2D problem 
and, although the latter is to be treated in a non- 
Euclidean space, provides a relatively simple formal- 
ism for the investigation of infinite periodic surfaces 
in general and the study of the geometrical transfor- 
mations relating them. 

I. Introduction 

Recent studies of some 3D crystalline structures with 
large cells have pointed out the limitation of the 
classical aspect of crystallography, as concerned with 
the study of periodic organizations of topologically 
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zero-dimensional objects such as atoms and 
molecules, and called for the introduction of more 
operative concepts, permitting analysis of them as 
periodic organizations of two-dimensional objects 
such as surfaces and films. Such structures are often 
observed in liquid crystals - the 'bicontinuous' cubic 
phases of lyotropics, the D phases and 'blue' phases 
of thermotropic smectics and cholesterics - but also 
in some biological and inorganic materials. The need 
for new terms to describe them was advocated in 
some recent papers (Scriven, 1976, 1977; Hyde & 
Andersson, 1984; Mackay, 1985; Mackay & 
Klinowski, 1986; Sadoc & Charvolin, 1986). Among 
these structures we are particularly interested in liquid 
crystalline ones, formed by amphiphilic molecules in 
the presence of water, which can be described as 
periodic entanglements of two fluids media separated 
by interfaces organized in a symmetric film exhibiting 
a very rich polymorphism (Luzzati, 1968; Ekwall, 
1975). We have recently demonstrated that, in the 
case of the 'bicontinous' cubic structures of these 
materials, the film built by the interfaces is supported 
by surfaces directly related to the F, P and G infinite 
periodic minimal surfaces (or IPMS) of the 
mathematicians (Charvolin & Sadoc, 1987). These 
surfaces can be described as periodic non-intersecting 
surfaces with zero mean curvature separating space 
in two identical labyrinths. Thus, the above structures 
are interesting not only on purely physicochemical 
grounds but, also, as actual structures modelling sur- 
faces of great mathematical interest. 

Our approach to the polymorphism of the struc- 
tures formed by amphiphilic molecules is presented in 
Sadoc & Charvolin (1986), and its application to the 
case of 'bicontinuous' cubic structures is developed 
in Charvolin & Sadoc (1987). It is based upon the 
idea that a geometrical frustration, related to local 
interactions of the molecules and packing constraints, 
takes place within the film. This frustration is relaxed 
if the film is transferred into the 3D space with positive 
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Gaussian curvature $3, or the hypersphere. Therein, 
the film built by the interfaces is supported by the 
spherical torus 7"2, a surface of genus 1 without cur- 
vature separating $3 into two identical subspaces. 
Then, in order to come back to the Euclidean space 
R3 in which the actual structures are embedded, the 
curvature of the curved space $3 is suppressed by the 
introduction of Volterra defects of rotation, or discli- 
nations, around the symmetry axes of the relaxed 
structure in $3. The main consequence of this pro- 
cedure is that the spherical torus of genus 1, which 
admits a {4, 4} tiling, is transformed into IPMS of 
negative curvature admitting a {6, 4} tiling. It is there- 
fore tempting to associate these IPMS to a particular 
surface of constant negative Gaussian curvature, the 
hyperbolic plane admitting a {6, 4} tiling, as they have 
the same local properties. However, it is known that 
the hyperbolic plane cannot be embedded in R3, 
while the surfaces obtained by the mapping of $3 into 
R3 must be. This means that these surfaces cannot be 
confused with the whole hyperbolic plane. Neverthe- 
less, there are strong relationships between them, and 
it is the purpose of this article to bring them out. In 
order to make the nature of the relationships between 
the hyperbolic plane and the IPMS manifest, we can 
use a simple but useful analogy between the hyper- 
bolic plane and the Euclidean plane, which shall be 
used at other places in the text for other illustrative 
analogies. The relationships existing between the 
hyperbolic plane and the IPMS are indeed of the 
same nature as those existing between the Euclidean 
plane and other surfaces without Gaussian curvature, 
such as a cylinder or a torus. A cylinder is obtained 
by cutting a strip from a plane and identifying the 
two boundaries, a torus of genus 1 is obtained by 
cutting a square, or a rectangle, in a plane and iden- 
tifying the opposite edges 2 by 2. If a Cartesian {4, 4} 
net of unit cells is defined on the original plane, the 
identifications needed for building the cylinder and 
the torus are identical to the writing of Born-yon 
Karman conditions preserving the translational perio- 
dicity of the plane. Thus, new surfaces can be built 
from the plane by substituting some operations of 
translation by identifications. We show in this paper 
that similar substitutions in the translation subgroups 
of the hyperbolic plane lead to the building of surfaces 
with negative Gaussian curvatures embedded in R3, 
which are the classical IPMS. 

II. Symmetry groups in the hyperbolic plane 

II.1. Generalities on symmetry groups 

Symmetries and their groups are described in 
classical books (Coxeter & Moser, 1957; Magnus, 
1974; Hilbert & Cohn-Vossen, 1983) and particular 
properties of the hyperbolic plane, useful in statistical 
mechanics, have been recently presented by Balzazs 

& Voros (1986). We therefore give here just the main 
tools needed for our approach and refer the reader 
to these sources for further details. 

We make use of PoincarCs representation of the 
hyperbolic plane (Hilbert & Cohn-Vossen, 1983; 
Coxeter, 1961). In this representation the whole 
hyperbolic plane is contained within a disk, the limit- 
ing circle of this disk represents the points at infinity 
of the plane and the family of circles orthogonal to 
this limit represents the geodesic lines. A mirror 
operation in the hyperbolic plane is represented by 
an inversion operation in a 'geodesic' circle and a 
direct displacement is the product of two such mirror 
operations, quite similarly to what happens in the 
Euclidean plane where rotation or translation are 
products of two mirror operations in two intersecting 
or parallel straight lines. However, because of the 
particular geometry of the hyperbolic plane, where 
one line can have two parallels passing through one 
point and non-intersecting lines are not necessarily 
parallels, as shown in Fig. l (a) ,  there are three types 
of direct displacements in this plane, as shown in Fig. 
l(b). They are: rotations, obtained by products of 
mirror operations in two intersecting 'geodesic' 
circles, not on the limit circle; translations, obtained 
by products of mirror operations in two non-inter- 
secting 'geodesic' circles; and parabolic displace- 
ments, obtained by products of mirror operations in 
two parallel 'geodesic' circles, i.e. having a common 
point at 'infinity' on the limiting circle. 

Among all the symmetry groups of the hyperbolic 
plane, we shall consider discrete groups associated 
with the {6, 4} tiling only. As said before, this tiling 
is imposed by the disclination process needed to map 
$3 onto R3 and transforming the spherical torus into 
a surface with negative Gaussian curvature (Sadoc & 
Charvolin, 1986; Charvolin & Sadoc, 1987). 

II.2. Symmetry groups of  the {6, 4} tiling 

Regular tilings of surfaces with constant curvature 
are built by reflections in three mirrors defined by the 
three sides of a rectangular triangle of geodesics, 
called an orthoscheme triangle or asymmetric unit 

(a) (b) 

Fig. 1. Geometry of the hyperbolic plane: (a) parallel lines D~ 
and D 2 to line D and (b) direct displacements, translation A-A', 
rotation B-B' and parallel displacement C-C'. Dashed circles 
are the trajectories of points. Thick circles are mirrors. 
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(Coxeter, 1961), as shown in Fig. 2. The set of replicas 
of one orthoscheme obtained by the repetitions of 
these reflections covers the surface totally, without 
overlap. For instance, in the Euclidean plane, the 
{6,3} and {3,6} regular tilings of hexagons and 
triangles are obtained from an orthoscheme with 
angles rr/2, 7r/6, 7r/3, and the {4, 4} regular tiling of 
squares is obtained from an orthoscheme with angles 
7r/2, I7"/4, 7 /4 .  Similarly, on the sphere, each of the 
Platonic spherical polyhedra can be obtained from 
its own orthoschemes; the examples of the dodecahe- 
dron and the icosahedron obtained from the non- 
Euclidean orthosch'eme with angles rr/2, rr/3, 7r/5 
are given in Fig. 3. The orthoscheme triangle is the 
fundamental region of the symmetry group; two 
points of the same fundamental region are not related 
by a symmetry operation and all points related by a 
symmetry operation are equivalent to one point of 
the orthoscheme. 

The {6, 4} tiling of the hyperbolic plane is obtained 
from a non-Euclidean orthoscheme with angles rr/2, 
7r/4, rr/6, as shown in Fig. 4. The sum of these angles 
is smaller than rr, because of the negative Gaussian 
curvature of the hyperbolic plane, and the area S of 
the orthoscheme is given by Gauss's relation S =  
[Tr- (rr/2 + 7r/4+ 7r /6 ) ] /K ,  where K is the Gaussian 
curvature (Hilbert & Cohn-Vossen, 1983; Coxeter, 
1961). Notice that the hexagonal element of the {6, 4} 
tiling is obtained by reflections in the mirrors defined 
by the sides of the angle of rr/6; reflections in the 
mirrors defined by the sides of the angle of 7r/4 would 

M° 

M2 M1 

Fig. 2. The orthoscheme triangle MoM~M 2 definining a (p, q) 
tiling. 

give the square element of the {4, 6} tiling which is 
the dual of {6, 4} and has the same symmetry group. 

Following Coxeter & Moser (1957) we denote by 
[6, 4] the symmetry group of this tiling. This group 
is defined by three generators R~, R2, R3, which are 
the reflections in the orthoscheme sides, and the six 
relations 

R~= R ~ =  R 3 = ( R , R 2 ) 6 = ( R 2 R 3 ) 4 = ( R , R 3 ) 2 =  I. 

Among all the symmetry operations obtained by com- 
bining these generators several times and in different 
orders, as the reflections do not commute, several are 
translations. We now focus on the translation sub- 
group of the [6, 4] symmetry group. The approach is 
closely similar to that used in the crystallography of 
2D structures. It consists of identifying a translation 
subgroup, called the lattice, defined by its funda- 
mental region, called the unit cell. 

II.3. Generalities on translation subgroups 

It is possible to find such a subgroup by considering 
that its unit cell can be a polygon with a number of 
sides divisible by four, except four itself which leads 
to translations in the Euclidean plane. The sum of 
the angles of this polygonal cell must be 27r and each 
side must be associated with a non-adjacent side of 
the same length by a translation (Hilbert & Cohn- 
Vossen, 1983, p. 259). If there are 4g sides, there are 
2g such translations (A~,  A2, A 3 , . . . ,  A2g) and their 
inverse. These 2g translations are generators, whose 
combinations constitute the translation subgroup. 
This is a non-Abelian group as translations in the 
hyperbolic plane do not commute. The generators are 
related by 

AIA2A3 ,  . . . , A2gA[1A21A31, .  . . , A2~ = L 

Notice that the relation depends on the way the sides 
of the polygonal cells are associated. The relation 
given above corresponds to the pairing of the sides 
shown in Fig. 5, but other pairings may be chosen 
(Magnus, 1974; Hilbert & Cohn-Vossen, 1983). 
Notice also that when g = 1, in the Euclidean plane, 

Fig. 3. Tiling of a sphere with an orthoscheme triangle having 
angles ~-/2, 7r/3 and 7r/5. The dodecahedral and icosahedral 
tilings obtained from it can be easily recognized. 

Fig. 4. Tiling of a hyperbolic plane with an orthoscheme triangle 
having angles ~r/2, rr/4 and rr/6. The {6, 4}, {4, 6} and {6, 6} 
tilings obtained from it can be easily recognized. 
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the relation becomes A~A2AI1A~ ~ = I and shows that 
translations commute in this case. 

In 2D crystallography there are two ways of looking 
at the unit cell. For instance, with the square lattice 
of the Euclidean plane, the square cell can be looked 
at either as the fundamental region of the infinite 
plane or as the surface of the torus obtained by 
identifying its opposite sides and its vertices all 
together. The second point of view corresponds to 
the writing of the Born-von Karman conditions of 
periodicity and, in this case, all points equivalent in 
a translation are identified. These two points of view 
are equally valid in the hyperbolic case. The 4g-gon 
can be looked at either as a fundamental region for 
the translation subgroup or as a toroidal surface 
obtained by identifying its sides two by two and its 
vertices all together. This allows the use of classical 
topological theorems to characterize the unit cell. 
Euler's relation shows that its genus is g, when con- 
sidered as a torus, and Gauss-Bonnet's theorem 
shows that its area is S = 4 7 r ( g - 1 ) /  K, where K is 
the Gaussian curvature of the hyperbolic plane 
(Hilbert & Cohn-Vossen, 1983). 

11.4. Translation subgroups of the [6, 4] group 

The very nature of IPMS provides a clue to deter- 
mine the lowest genus possible for their unit cell and, 
therefore, the essential features of the polygonal unit 
cell in the hyperbolic plane as discussed above. The 
surface enclosed in the primitive unit cell of an IPMS 
is a 3D fundamental region. If the opposite faces of 
this cell are identified two by two, a toroidal surface 
is obtained, embedded in a space which is the hyper- 
torus T3. This surface has a particular genus g, which 
is defined as that of the IPMS, and this genus must 
also be that of the toroidal surface built from the unit 
cell in the hyperbolic plane. This genus cannot be 
smaller than 3, as the identification of the six faces 
of the 3D cell leads -to the formation of a toroidal 
surface having at least three handles. The genus could 
be larger than 3 but, as the IPMS studied up to now 
are of genus 3, we shall restrict our developments to 
this value of g. 

P< 

P7 P2 

Fig. 5. A fundamental region for a translation in a hyberbolic 
plane and the pairing of its sides. 

Thus the smallest translation cell in the hyperbolic 
plane associated with IPMS of genus 3 is a dodecagon 
of area 87r/K and, as the orthoscheme triangle of 
the {6, 4} tiling has an area of 7r/(12K), this transla- 
tion cell contains 96 orthoschemes. A drawing of the 
dodecagonal fundamental region in the Poincar6 rep- 
resentation is given in Fig. 6. All its angles are equal 
to ~'/6 and the lengths of its sides are alternately 
equal to the double side and the double diagonal of 
a square of the {4, 6} tiling. There are different ways 
to associate the sides of the dodecagon two by two 
which result in different subgroups of translation in 
[6, 4]. Among all these possibilities we choose that 
which corresponds to the normal subgroup, i.e. the 
subgroup which is globally invariant in transforma- 
tions of its elements by elements of the group [6, 4]. 

We call tl, t2 and /3 the translations relating large 
opposite sides, and ~'1, r2 and ~'3 the translations 
relating small opposite sides. If we label the angles 
of the dodecagon from 1 to 12, all angles reproduced 
by these translations around one vertex of the original 
dodecagon appear in the order 1, 6, 11, 4, 9, 2, 7, 12, 
5, 10, 3 and 8. This is also the order of the vertices 
of a star polygon {12/5}. The translations t; and ~'~ 
are the generators of the translation subgroup with 
the relation 

t31721 t~ -I r31 t21 r~ -1/37"2/i 73/271 = / ,  

as can be seen by following the successive images of 
vertex 1 on the dodecagon. We call this normal sub- 
group qb~. In Appendix A we show that ti and ri are 
elements of [6, 4] and [6, 6]. As already said, there 
are other translations in the [6, 4] group associating 
two non-opposite sides of the dodecagonal cell, as 
found in Hilbert & Cohn-Vossen (1983), which are 
elements of another subgroup of translation, isomor- 
phic to qO~, but not normal. 

t ~ ~ / ,  I' //~ 

Fig. 6. The dodecagonal fundamental region for a subgroup of 
translation in the {6, 4} tiling of a hyperbolic plane and the six 
generators t~ and ~'~. Sides 1-2 and 8-7 are equivalent by transla- 
tion t3, sides 5-4 and 10-11 are equivalent by translation ~'3. 
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Among the translations defined by the generators 
h and z~ those associated with Petrie's polygons of 
the {6, 4} tiling are particularly important in our prob- 
lem. A Petrie polygon is drawn along the sides of the 
tiling in such a way that two consecutive sides, but 
not more, belong to a given tile of the tiling. An 
important property of a Petrie polygon of a tiling 
{p, q} is that it is invariant by the product R I R 2 R 3  
where R~, R2, R3 are the reflections in the sides of 
the orthoscheme triangle of the tiling (Coxeter & 
Moser, 1957, p. 54). This operation is a glide reflection 
and its square is a pure translation. Thus, a Petrie 
polygon defines a translation. Petrie polygons of the 
{6, 4} and {4, 6} tilings are drawn in Fig. 7, together 
with the geodesic line of the hyperbolic plane globally 
invariant in this translation and which contains the 
common points of the two Petrie polygons. Both 
polygons define the same translation. Another trans- 
lation of the same type can also be defined considering 
the {6, 6} tiling of the same hyperbolic plane. This 
tiling is a subgroup of {6,4} as its orthoscheme 
triangle with angles ~/2,  ~-/6 and ~'/6 is made with 
two juxtaposed orthoschemes of {6,4}. The Petrie 
polygon of {6, 6} and its translation, which is also an 
element of [6, 4], are drawn in Fig. 8. 

We call these two translations P64i and P66~, refer- 
ring to the type of Petrie polygon used to define them, 
and we now determine their expressions in terms of 
the generators t, and ~'~. For this, we choose a par- 
ticular system of mirrors permitting the construction 
of translations h, ~~, P64~ and P66i. These mirrors are 
the sides of one hexagon of the {6, 4} tiling and the 
symmetry axes normal to these sides; they are labelled 
as A~, B~ and M~ in Fig. 9. Then, if one considers that 
the operations act from left to right, 

ti = AiBi ,  Zg = BjAiBiAj ,  

P64i = MkBkMjAj, P641 = MkAkMjBj, 

P66i = AjAk, P661 = BjBk, 
p34i= rT' t ,  rk and P~6i= tjrT, ' t~ ' .  

P64i and P66i cannot be expressed in terms of h and 
z~, and are therefore not elements of O~, but P34~ 
and P~6i a r e .  

III. Three IPMS of genus 3 and the hyperbolic plane 

These three surfaces are the so-called P and F sur- 
faces of Schwarz (1890) and the gyroid G of Schoen 
(1970). They can be defined in the Euclidean space 
R3 as periodic non-intersecting surfaces of zero mean 
curvature, separating R3 into two congruent (P and 
F) or oppositely congruent (G) labyrinths of different 
connectivities which are described in Appendix B. 
The surfaces are all built from orthoscheme triangles 
with angles zr/2, Ir/4 and zr/6 (Schwarz, 1890; 
Schoen, 1970; Hyde & Andersson, 1984; Mackay, 

Fig. 7. Petrie polygons for the {6,4} and {4,6} tilings and the 
geodesic line invariant by translation. 

/ 

Fig. 8. Petrie polygon for the {6, 6} tiling and the geodesic line 
invariant by translation. 

Fig. 9. Mirrors used to define the elementary translations. 



J.-F. SADOC AND J. CHARVOLIN 15 

1985; Mackay & Klinowski, 1986; Charvolin & Sadoc, 
1987) and can therefore be described by the [6, 4] 
symmetry group of the hyperbolic plane studied 
above; although they issue from the same hyper- 
bolic plane, they are distinct in R 3 because the ortho- 
scheme triangles have differently curved sides 
(Charvolin & Sadoc, 1987). 

III.1. S c h w a r z '  s P sur face  

This is the simplest of the three surfaces. It separ- 
ates two. congruent labyrinths of connectivity 6, 
formed by the edges of simple cubic lattices, the 
vertices of one labyrinth being at the centres of the 
cubes of the other. Topological analogues of surface 
P are represented in Fig. 10. They are infinite periodic 
polyhedra built with either square or hexagonal fiat 
faces, meeting 6 by 6 or 4 by 4 at every vertex respec- 
tively. They are obviously tilings of the {4, 6} or {6, 4} 
types and are therefore called {4, 6}-6t or {6, 4}-6t, 
where 6t is the number of tunnels formed by the 
surface (Wells, 1977; Coxeter, 1968). These topologi- 
cal analogues are quite useful to relate the P surface 
to the {6, 4} tiling of the hyperbolic plane. For this it 
is advisable to choose the centre of the cubic cell on 
the surface itself and not at a vertex of the labyrinth, 
as is usually done (Charvolin & Sadoc, 1987). ] 'he 
best choice is the centre of a hexagon in the {6, 4}-6t 
case, or the vertex of a square in the {4, 6}-6t case, 
as shown in Fig. 11. With this choice the part of the 
polyhedron enclosed in the unit cell is similar to the 
dodecagonal fundamental region of the ~N sub- 
group. It is a dodecahedron with non-equal sides, the 
short and long sides being equal to two sides and two 
diagonals of a square respectively. It appears also 
that the vertices of this dodechedron are joined two 
by two, following the rule shown in Fig. 11 where 
they have been numbered as in Fig. 6; for instance, 
vertices 1 and 10 are identified together. These iden- 
tifications correspond to the building of the tunnels 
formed by four squares. 

This identification procedure is strictly analogous 
to the one which is used when a cylinder is built by 
wrapping of a plane, as shown in Fig. 12. The {4, 4} 
tiling of the plane defines a translation subgroup with 
generators a~ and a2 and the cylinder has the same 

4 group but with the identification rule a] = I. Thus if 
we return to our problem, it is clear from Figs. 8 and 
11 that the unit cell of the P surface is obtained from 
the hyperbolic tiling if the identification rule p266 i -- I 
is adopted. On the hyperbolic .tiling all vertices of 
dodecagons are equivalent by the translations of the 
subgroup ~ v .  On the P surface all points obtained 

P66i are identified from one point by the operation 2, 
in one single point. The symmetry operations on the 
P surface, an intrinsic point of view, are elements of 
the subgroup ~ in which all elements 2 P66i, and 
elements obtained by transforming p26i  by other ele- 
ments of 053N, are forced to be identity operations. 
Some parts of the hyperbolic plane must be cut out 
to make the identifications leading to the P surface 
possible. These are shown in Fig. 13, in the case of 
the {4, 6} tiling corresponding to the {4, 6}-6t structure 
of Fig. 11. 

A consequence of this is that the generators ti and 
ri commute and that all translations, have the form 
t~[t~t~, ~'i being expressed in terms of t~. This results 
from p266i = tjr[]t-£ 1 = I which leads to ri = t k l t j .  T h e  
commutation is demonstrated in Appendix C for 
the three examples. The commutativity and the 
expression of all translations in terms of three gen- 
erators prove that the subgroup of translations 
obtained from @~v, including the identifications, is 
isomorphic to the subgroup of translations in a 

Fig. 11. The identification of the vertices of the dodecagonal cell 
for the polyhedron of Fig. 10(a ), leading to an element of surface 
topologically equivalent to that of the cell of the P surface. This 
dodecagonal cell is contained in a cube. The polyhedron of Fig. 
10(a) is obtained by reproducing this cube with the translation 
operations defined by its edges. For instance the juxtaposition 
of the two triangles containing numbers 10 and 3 builds a square 
of this polyhedron. 

(a) (b) 

Fig. 10. Two infinite polyhedra topologically equivalent to the P 
surface. (a) {4, 6}-6t and (b) {6, 4}-6t. 

I 
; 

I 

I 
I 
I 
I 

~t 

())))) 

Fig. 12. The plane with a square tiling and the cylinder obtained 
from it by the identification a~ =/. 
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Euclidean 3D lattice. In this intrinsic point  of  view 
the translat ions are displacements along geodesic 
lines on the surface, but two equivalent points are 
also equivalent by a translat ion in the Euclidean space 
in which the surface is embedded.  The P surface is 
also a crystal in the Euclidean 3D space. 

III.2. Schwarz" s F surface 

This surface separates two congruent  labyrinths of  
connectivity 4 whose axes are parallel to the directions 
of  the diagonals  of  a simple cubic packing. A topo- 
logical analogue of  this surface is represented in Fig. 
14. It is a periodic infinite polyhedron built with fiat 
hexagonal  faces meeting 6 by 6 at every vertex. The 
primitive unit cell of  this polyhedron is a rhombohe-  
dron and,  if we put its centre at the centre of  a 
hexagonal  face, the part  of  polyhedron enclosed in 
this cell is the folded dodecagon shown in Fig. 15. 
We find here again a dodecagonal  fundamenta l  
region, as in the case of  the P surface, and we shall 
find one for the G surface also. We recall that this is 
quite normal as we consider  surfaces of  genus 3 
obtained from the same hyperbolic plane with a {6, 4} 
tiling. The difference between the P and F surfaces 
appears  immediately  if one considers the vertices 
which are identified. For instance, if the vertices of  

/ 

Fig. 13. In black are the parts of the hyperbolic plane which are 
to be cut out in order to permit the identifications leading to the 
P surface. The interrupted geodesic line, which represents a 
translation P26~ forced to identity, crosses a crown of four 
squares of the {4, 6} tiling and is a cyclic line. 

Fig. 14. An infinite polyhedron topologically equivalent to the F 
surface. It is a {6, 6} built from a truncated tetrahedron. 

the dodecagon are numbered  as in Fig. 6, vertex 1 is 
now identified with vertex 4 and not with vertex 10, 
as it was in the case of  the P surface. Thus, these 
surfaces are built from the same fundamenta l  region 
of the hyperbolic plane, and therefore have the same 
intrinsic curvature,  but differ in the ways the iden- 
tifications are made. This makes apparent  what  is 
implied when one of  these surface is t ransformed into 
another  by Bonnet 's  t ransformat ion (Hyde  & 
Andersson,  1984; Schoen, 1970). This t ransformat ion,  
which is a t ransformat ion  of  bending without stretch- 
ing relating two surfaces with the same Gauss ian  
curvature,  cannot  be made  without changing the iden- 
tifications in the fundamenta l  region, i.e. without tear- 
ing the surfaces,  and this is why the intermediate  
steps appear  as self-intersecting surfaces. 

The identifications of  the fundamenta l  region 
needed to obtain the F surface are such that 3 P64i  = L 
The symmetry operat ions of  the F surface are thus 
the elements of  ~ in which all elements 3 P64i and 
elements obtained by t ransforming P34, by other  ele- 

Fig. 15. The identification of the vertices of the dodecagonal cell 
leading to an element of surface topologically equivalent to that 
ofthe cell of the F surface. The polyhedron of Fig. 14 is obtained 
by reproducing this surface using a rhombohedral unit cell. 

', ~ • . ,  

Fig. 16. In black are the parts of the hyperbolic plane which are 
to be cut out in order to permit the identifications leading to the 
F surface. The interrupted geodesic line, which represents a 
translation P6~4, forced to identity, crosses a crown of four 
hexagons of the {6, 4} tiling and is a cyclic line. 
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ments of ~ v  are forced to identity. Here again gen- 
erators ti and ri commute  (see Appendix  C) with the 
same consequences as in the case of the P surface. 
In Fig. 16 are shown parts of  the {6, 4} tiling of  the 
hyperbol ic  plane with the regions which are to be cut 
out in order  to permit  the identifications needed to 
obtain the F surface. 

1II.3. S c h o e n ' s  G sur face  

This surface separates two oppositely congruent  
labyrinths of  connectivity 3. It has no topological  
analogue made  of  infinite polyhedra  with square or 
hexagonal  fiat faces but one might be buil t  with the 
skew face drawn in Fig. 17. The fundamenta l  region 
of  the surface enclosed in the unit cell of  the polyhe- 
dron is the dodecagonal  one shown in Fig. 18. In this 
case the identifications are of a totally different type 
from those met in the cases of  the P and F surfaces. 
The vertices are no longer identified in six sets of  t.wo 
but two sets of  vertices are identified together and 

/ 
/ 

Fig. 17. The element of surface with flat faces supported by the 
Petrie polygon of the cube. It can be used to build a topological 
equivalent of the G surface by packing on a cubic lattice. 

6 

,,r---- 2 

Fig. 18. The indentification of the vertices of the dodecagonal cell 
leading to an element of surface topologically equivalent to that 
of the cell of the G surface. 

the remaining  six are left alone. The operat ions 
leading to this new type of  identifications are 

3 - 1  3 
P 6 4 i + 3  l i +  l , P64iti+l I and = / ,  with i =  1 2, 3. It is 

interesting at this stage to consider  again the iden- 
tification process used to make a cyl inder  from a 
Eucl idean plane with a {4, 4} tiling. A cyl inder  can 
be obtained with an identification rule a~ ' - - I  and 

n also with a more complex one a l + a2 = I. In the first 
case a lattice of circles and straight lines is drawn on 
the cylinder,  whereas in the second case the lattice is 
drawn with helices. This second type of identif ication 
in the hyperbol ic  plane leads to the G surface. Here 
again ti and ri commute,  but only "/'i froms a basis 
for the Eucl idean translat ion group in R3 (see Appen-  
dix C). For instance t~ = r l r 3  ~ and tlt2t 3 = I, so that 
the ti are coplanar  in this case. In Fig. 19 are shown 
parts of the {6, 4} tiling of the hyperbol ic  p lane with 
the regions which are to be cut out in order to permit  
the identifications needed to obtain the G surface. 

IV. Concluding remarks 

We recently analysed l iquid crystalline structures 
formed by amphiph i l i c  molecules as per iodic  systems 
of frustrated fluid films and showed that, in the par- 
t icular case of  'b icont inuous '  cubic phases,  the 
frustration could be solved i f  the filrri was supported 
by the hyperbol ic  p lane admitt ing a {6,4} tiling. 
However, as a hyperbol ic  p lane  cannot be embedded  
in the Eucl idean space R3, it appeared that the film 
of the actual structure must  indeed be supported by 
part icular  surfaces derived from the hyperbol ic  plane: 
the infinite per iodic  min imal  surfaces of IPMS 
(Charvol in  & Sadoc, 1987). At that t ime the exact 
mode of derivation was not clearly understood.  We 
have tried to make precise the relat ionships existing 

Fig. 19. In black and hatching are the parts of the hyperbolic plane 
which are to be cut out in order to permit the identifications 
leading to the G surface. In this case there is no cycle crossing 
elements of a regular tiling but helical lines. 
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between the hyperbolic plane and the IPMS in the 
present paper. 

For this we considered the intrinsic geometry of 
this particular hyperbolic plane and analysed its sym- 
metry groups, focusing our interest onto translation 
subgroups and fundamental regions. The periodic 
reproduction of the fundamental region by a transla- 
tion subgroup covers the whole hyperbolic plane 
without overlap. Another representation of the peri- 
odic behaviour is that obtained by identifying the 
sides of the fundamental region two by two, so that 
all its vertices are gathered in one point, in order to 
build a toroidal surface. These two extreme rep- 
resentations are embedded in complex spaces. It is 
also possible to restrict attention to a small number 
of well chosen identifications and we show that, in 
some particular cases, the surfaces obtained are the 
IPMS embedded in R 3. These surfaces are obtained 
when some combinations of translations associated 
with the Petrie polygons of the tilings of the hyper- 
bolic plane, as well as their combinations with 
elementary translations of the subgroup, are forced 
to identity. This imposes some 'surgery" in the hyper- 
bolic plane, as some parts of it have to be cut out in 
order to permit the identifications, and implies also 
that the IPMS cannot keep a constant Gaussian cur- 
vature; it is only its averaged value which corresponds 
to that of the initial hyperbolic plane. These distor- 
tions are to be related to the fact that the whole 
hyperbolic plane cannot be embedded in R 3 and the 
following simple argument can be used to illustrate 
this point. The number of points reproduced by ele- 
ments of the symmetry group is infinite in all cases 
but we can look at the way it increases within a disk 
of increasing radius. In the hyperbolic plane this 
variation is exponential but follows a power law in 
R 3. Thus the hyperbolic plane is too 'large' to be put 
in R 3 without the cutting out of some parts of its 
surface. 

In this paper we considered a limited number of 
intermediate periodic representations only, three sur- 
faces of genus 3 and cubic symmetry. Their exact 
number is certainly much larger, and may be infinite. 
In particular, surfaces of higher genus with larger 
fundamental regions should be considered. Another 
unsolved question is that of the condition ensuring 
that the surfaces built in that way are not self-inter- 
secting surfaces. The solution probably requires a 
study of the properties of the commutators of the 
translation subgroup. While we have shown that these 
commutators become the identity when some transla- 
tions are forced to identity to obtain the particular 
IPMS, we do not know the general condition for this. 
An important open question is also that of the relation 
between our transformation of one IPMS into 
another, by changing the identifications in the hyper- 
bolic plane, and the well known Bonnet transforma- 
tion relating surfaces of constant Gaussian curvature, 

which should be the analytical counterpart of the first. 
In this problem concerning the transformation of 
IPMS without self-intersection, the first suggests that 
the second cannot be visualized continuously, without 
crossing surfaces with self-intersections. 

Finally, we want to emphasize the interest of the 
crystallography of the hyperbolic plane whose appli- 
cation should not be limited to liquid crystalline 
structures but extended to the more general field of 
the physics of films and surfaces. 

Fruitful discussions with E. Dubois-Violette and 
B. Pansu (Physique des Solides, Orsay), R. Mosseri 
(CNRS, Meudon) and P. Pansu (Ecole Polytech- 
nique, Palaiseau) are gratefully acknowledged. 

APPENDIX A 
Demonstrat ion that t; and ~', are elements of  

[6, 4] and [6, 6] 

With the operations defined in Fig. 9 the translation 
t3 = B 3 A 3 .  A3  and B3 are elements of[6, 4]; this proves 
that t 3 and also t, are elements of [6, 4]. 

7" l = B3A2B2A 3 if we write the translation as the 
product of two 7r rotations B2A 3 and B3A 2. This 
expression for 7, proves that the r~ are elements of 
[6,4]. 

Consider now other mirrors defined by edges of 
the central hexagon of the {6,6} tesselation (and 
called a , ,  a2,  a3 and b,, b2, b3; the centre of the edge 
which defines a, is the common point of B2 and A3).  

Consider also mirrors which are symmetry mirrors of 
the central hexagon: M, ,  M 2 ,  M3 a r e  such mirrors 
but there are three others called m., m 2 ,  m3 .  All the 
mirrors we have considered are elements of [6, 6]. 

We could write rl = b , a ,  and t 3 = m3M3( a2M3) 3. t 3 
is written as the product of two 7r rotations, because 
a3M 3 is a rr/3 rotation. These expressions prove that 
r~ and t~ are elements of [6, 6]. So 4'3 N is a subgroup 
of [6, 6] which is a subgroup of [6, 4], because t~ and 
r~ are generators of q ~ .  

APPENDIX B 
Networks for P, F and G surfaces 

Figs. 20, 21 and 22 represent the primitive cells of 
the three IPMS, with one of the two networks in each 

t 
Fig. 20. Unit cell for the P surface. Only one labyrinth is shown. 

It is also the primitive cell of the simple cubic lattice. 
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Fig. 21. Unit cell for the F surface. Only one labyrinth is shown. 
It is also the primitive cell of the face-centred-cubic lattice. 

Fig. 22. Unit cell for the G surface. Only one labyrinth is shown. 
It is also the primitive cell of the body-centred-cubic lattice. 

Fig. 23. The labyrinths of the P surface. 

Fig. 24. The labyrinths of the F surface. 

Fig. 25. The labyrinths of the G surface. 

cell which is used to define the IPMS. Rods of  these 
networks are or thogonal  to faces of  cells. In the P 
and F surface cases rods pierce faces at their centres; 
in the G surface they pierce the faces on the long 
diagonal  in the ratio 3 :8 .  

It is worth noting that  it is possible to go from one 
network to another  by a simple topological  t ransfor-  
mation. The connectivity of  the node,  which is 6 in 
the P-sur face  case, is 4 in the F-surface  case but  with 
two nodes in the cell, and decreases to 3 with three 
nodes in the cell f rom the G surface. This t ransforma-  
tion is close to the 7"1 t ransformat ion  in t roduced by 
Weaire & Rivier (1984). 

Surfaces with the toplogy of  the three IPMS are 
obtained by inflating rods. Then it is clear that  they 
all have the same topology (Figs. 23-25). 

A P P E N D I X  C 
Ca lcu la t io n  o f  some  commutators  

We give some examples  of  the method used to calcu- 
late commuta tors  when some translat ions are iden- 
tified to obtain the three IPMS. 

For the P surface we impose (B2B1)2=I  and 
similar relations with other  Bi and Ai. Consequent ly  
BiBj and AiAj  commute;  B~Aj also commutes  because 
it is a 7r rotation.  

t21t-flt2tl = B2A2B1A1A2B2AIB1 with the commu-  
tation rules leads to the commuta t ion  of  t operat ions.  
With a similar calculat ion it can be shown that  
[~'~, %] = I and [t~, ~-i] = I. 

For  the F surface identification rules are of  the 
type (M3A3M~BI)3=I ;  we know that MiA~ com- 
mutes and  that  M3Mj = M j M 2 = M 2 M 3  are 2¢r/3 
rotations. This leads to the identification rule 
A~A3A2B~B3B2 = I. With this form it can be shown 
that t and ~" operat ions  commute.  

For the G surface identification rules are of  the 
type BIAI (M1AI M2B2) 2 = Bl B3A2A3B1B2. With this 
expression and similar ones t~lt-f~t2h = I. It can be 
shown also that  commuta tors  [~'i, 9 ]  and [t~, 9 ]  are 
the identity. 

With commuta t ion  relations the six identifications 
lead to t~ = z~7"31, and others by cyclic permutat ions .  
The three ~'~ form a basis,  but  the ti do not because 
there is a relation tlt2t3 = 1. 
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Abstract 

The internal strain induced in a crystal structure by 
lattice deformation was considered. A suitable rota- 
tionally invariant representation was introduced and 
the corresponding contribution to the elastic con- 
stants was calculated. The method is based on the 
use of crystallographic rather than Cartesian atomic 
coordinates as variables of energy derivatives, with 
full exploitation of space-group symmetry and no 
constraint on the lattice geometry. A two-body Born 
interatomic potential was assumed, for both ionic and 
molecular crystals; energy derivatives of electrostatic 
lattice sums were calculated with the Ewald series. 
Molecular groups are treated within a rigid-body 
scheme based on Eulerian angles and translations as 
inner strain variables. Results of computations of 
Mg2SiO4 (forsterite) are reported, and the importance 
of optimizing the potential parameters against experi- 
mental data is discussed. 

Introduction 

Static models of crystals account for the response of 
the atomic structure to physical agents independent 
of temperature, such as mechanical stress and electric 
field. Being simpler than dynamic models, they pro- 
vide an easier linkage between crystal properties and 
interatomic or intermolecular forces, by which the 
latter can be investigated. The property considered 
here is elasticity, following previous work (Catti, 
1985) where the method of crystal static deformation 
to calculate elastic constants was outlined. 

It is well known that when a crystal is stressed 
elastically, the induced deformation preserves the 
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translational symmetry and can be considered the 
superposition of a pure lattice (external) strain and 
of an internal strain (Born & Huang, 1954). The 
former keeps the atomic fractional coordinates con- 
stant, changing just the unit-cell geometry, while the 
latter does the opposite. In the previous paper the 
contribution of external strain to crystal elasticity was 
considered explicitly, whereas here attention is 
focused onto inner strain. This is actually a relaxation 
of the crystal structure responding to a forced lattice 
change; by taking it into account, not only are more 
reliable values of elastic constants calculated, but also 
the structure changes caused by an applied 
anisotropic stress can be predicted. 

Recently, the subject of internal strain in crystal 
structures has drawn considerable attention. A 
general thermodynamic theory was developed, where 
inner strain is considered as an independent physical 
variable on the same footing as macroscopic thermo- 
dynamic quantities (Barron, Gibbons & Munn, 1971). 
Besides, a number of experiments on uniaxially 
stressed crystals have produced energy-level shifts 
related to atomic displacements, which can be 
detected through the study of Jahn-Teller effect, spin- 
lattice coupling in electron paramagnetic resonance 
(EPR), stress-induced linear dichroism and other 
methods (Cousins, 1981; Devine, 1983). The most 
direct experimental technique to probe internal defor- 
mations in crystals relies of course on the strain 
dependence of the intensity of elastic scattering of 
X-rays or neutrons (Segmiiller, 1964). Computational 
methods are particularly valuable in this respect, 
owing to the difficulty of experiments on anisotropi- 
cally stressed crystals and to the need of interpretation 
of results when these are available. 
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